Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables

نویسنده

  • NANTEL BERGERON
چکیده

We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions which was recently studied as a vector space by Rosas and Sagan [12]. The bases for this algebra are indexed by set partitions. We show that there exist a natural inclusion of the Hopf algebra of noncommutative symmetric functions studied in [17] in this larger space. We also consider this algebra as a subspace of noncommutative polynomials and use it to understand the structure of the spaces of harmonics and coinvariants with respect to this collection of noncommutative polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPRINGER’S THEOREM FOR MODULAR COINVARIANTS OF GLn(Fq)

Two related results are proven in the modular invariant theory of GLn(Fq ). The first is a finite field analogue of a result of Springer on coinvariants of the symmetric group Sn acting on C[x1, . . . , xn]. It asserts that the following two Fqn [GLn(Fq )×F × q ]modules have the same composition factors: • the coinvariant algebra for GLn(Fq ) acting on Fqn [x1, . . . , xn], in which GLn(Fq ) ac...

متن کامل

Quasi-invariant and Super-coinvariant Polynomials for the Generalized Symmetric Group

The aim of this work is to extend the study of super-coinvariant polynomials, introduced in [2, 3], to the case of the generalized symmetric group Gn,m, defined as the wreath product Cm ≀ Sn of the symmetric group by the cyclic group. We define a quasi-symmetrizing action of Gn,m on Q[x1, . . . , xn], analogous to those defined in [12] in the case of Sn. The polynomials invariant under this act...

متن کامل

Symmetric Functions in Noncommuting Variables

Consider the algebra Q〈〈x1, x2, . . .〉〉 of formal power series in countably many noncommuting variables over the rationals. The subalgebra Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all elements invariant under permutation of the variables and of bounded degree. We develop a theory of such functions analogous to the ordinary theory of symmetric functions. In p...

متن کامل

The Primitives and Antipode in the Hopf Algebra of Symmetric Functions in Noncommuting Variables

We identify a collection of primitive elements generating the Hopf algebra NCSym of symmetric functions in noncommuting variables and give a combinatorial formula for the antipode.

متن کامل

Coinvariants for Modular Representations of Cyclic Groups of Prime Order

We consider the ring of coinvariants for modular representations of cyclic groups of prime order. For all cases for which explicit generators for the ring of invariants are known, we give a reduced Gröbner basis for the Hilbert ideal and the corresponding monomial basis for the coinvariants. We also describe the decomposition of the coinvariants as a module over the group ring. For one family o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005